Operating & Commissioning Instructions BLR-CB (Common point switching) & BLR CB (A) (Volt Free switching)

Power Factor Control Relay

As with all electrical equipment, the appropriate specifications governing electrical installation must be followed when Power Factor Correction Equipment is installed. When removing the front nameplate to adjust the function switch and DIP switches, always ensure that your body is not carrying any electrostatic charge. This can be accomplished by simply touching a grounded object, such as the switchboard metal casing to dissipate any electrical charge before removing the cover plate.

- 1. Check that the Measurement and Control Voltage, Supply Frequency and Current Transformer rating comply with the ratings given on the back of the relay.
- 2. Mount the relay in the switch panel. The cut out size is 138 x138 mm. The relay is secured either with two fixing bolts on the side of the relay, or with two side mounting right angled brackets, for fixing to a flat surface.
- 3. Connect up in accordance with the wiring diagram. Pay special attention to the cross section size of the C.T. connections. We recommend for runs up to 10 metres 2.5mm2 cross section. The BLR CB constantly monitors the mains supply voltage. If this falls below 280V all capacitor steps are disconnected. Voltage sensing is made on terminal "A" which must be connected to phase L2. In case of volt free switching this connection is made at step 1 (see wiring diagram.)
- 4. Check the coding switch (1) for the C.T. setting is correct -x/1A = OFF (DIP switch down) -x/5A = ON (DIP switch up).
- 5. Adjust DIP switch (2) to select p.f. Alarm function ON (in circuit) or OFF (out of circuit).
- 6. Apply the measurement and control voltages. Connect the Current Transformer, and then remove any short circuit link. Indication "I --0": no current flowing, resp. <1% of nominal secondary c.t. current. A minimum of 1% of nominal secondary C.T. current must be reactive before controlling will start.
- 7. Rotate function switch to 8 and press + buttons together. Hold for at least 20 seconds. This will clear the memory and delete any capacitor step values that were stored during factory test.
- 8. Wait for the 90 sec. lockout time to elapse. During this time the required parameters can be set as listed below, using the +/- buttons (4/5). Each set value is stored in the memory, once the function switch is moved on to the next position.
- 9. With function switch (3) in **position 1**, select the required target p.f. using +/- buttons.
- 10. With function switch (3) in **position 2**, select the required switching step time delay, using +/- buttons.
- 11. With function switch in **position 5**, select the number of switching steps, using the +/- buttons. The relay is delivered with this setting on its maximum number of steps. If the max. number of steps is selected, but capacitors are not connected to all the steps, the relay will recognise this, and will make three switchings to verify there is no connection. The disconnected step(s) will then be excluded from the switching sequence process. In the event of power failure, the disconnected steps will be re-activated, and three test switches will be made again to determine the number of disconnected steps.
- 12. Set function switch (3) in position 3, so that the installation is in "Automatic" operation.
- 13. The digital indicator will show the system power factor. e.g. i 0.87 for lagging or c 0.94 for leading load.
- 14. After the lock out time, with an inductive load on the system, if the relay is correctly connected, the + LED will start to flash.
- 15. If the installation is correctly connected, the relay will now switch successive steps, following the selected step time delay until the target power factor is obtained. Each energized step will be indicated on the LED display 6. As each step switches in, so the digital display of power factor will change. If the installation p.f. is above or below the target p.f., the "+" LED (Below Target) or "-" LED (Above Target) will flash.

- 16. The BLR-CB does not require any adjustment of C/k and so this control is not fitted. The relay measures the output for each capacitor step in the form of "units of value" (inquiry in **position 8**). This measurement is made during the normal switching function according to reactive load requirement. These "units of value" are stored in the relay memory and the appropriate unit is called up in order to meet the changing reactive load demand.
- 17. A flashing display segment indicates that the relay is searching for a suitable capacitor size (ind. or cap.) in order to meet the required target power factor. If no suitable size is available, then no switching will take place, and the segment will continue to flash until the target p.f. is obtained.
- 18. It is often necessary to commission an installation when there is no other load on the system. In this case, put the function switch (3) to **position 4**. Capacitors can be switched with the aid of the +/- buttons. Please note that when performing this manual switching function, the "units of value" (see 15 above) will not be stored in the memory. When manual operation is not required any more, set the function switch back to position 3 (Automatic).
- 19. With the function switch in **position 9** two types of Low Power Factor Alarm can be selected:
- a) With "A 0" in the display, the alarm indication can only be cancelled by moving DIP switch (2) briefly into the off position (down).
- b) With "A 1" in the display the alarm will extinguish itself automatically once the correct target power factor has been obtained again.
- c) If the target power factor is not obtained, on account of insufficient capacitors, after a time delay of 75 times step switching time, the symbol "AL" will appear at 5 sec. intervals in the display.
- d) If the capacitors are being subjected to a distorted waveform which is producing dangerous harmonic over currents, then this will be shown as an alarm in the display: "HA" will flash at 5 second intervals.
- e) If both alarms are signalling, together then the symbols "AH" will flash in the display.
- f) If external fault signalling contacts for low power factor (m) are fitted the alarm contact is given between terminals M-MO (AL).
- 20. Exit port (7), TTL interface, enables connection of a data-logger type DS01/DS02/DS03 exit RS232 or an interface, type UMS-C-exit RS232 to a PC. Using software "BSTO_E" it is possible to record and analyse data, such as power factor $\cos \varphi$, date and time of each switching step, connected and disconnected steps and any activated alarm function.

Once the required settings or alterations have been made, set the function switch to position 3 "Automatic" and replace the front cover plate, so as to inhibit unauthorized interference with relay settings.

DIP Switch (1)

Current - path: x/1A or x/5A switch position OFF = x/1A

OFF = x/1A ON = x/5A

If requested data are not indicated on order, relay will be shipped in position "ON" (x/5A)

DIP Switch (2)

Fault signalling contact /alarm message "m" and/or "z"

switch position OFF = no status of alarm in LED display and or alarm re-set.

ON = status of alarm will be shown in display.

check before commissioning

Function Switch (3)

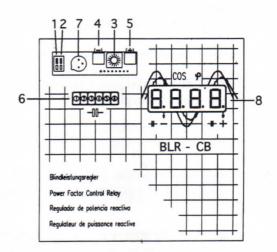
(Standard Version with 10 Switch Positions)

- 0 = Relay not in automatic function. All steps will be switched off after 20 secs. The digital display will show "OFF".
- $1 = \text{Adjustment of pre-set target power factor within the range } 0.70 \log \dots 1.0 \dots 0.90 \log \dots by means of the +/- buttons. Target level is shown in the display.$
- 2 = Adjustment of the step switching time, 5 secs ... 1200 secs, by means of the +/- buttons. For rapid digit change, hold the button down continuously. The display will show for example "50".
- 3 = Relay in automatic function, with indication of system power factor in the digital display, i ind., c = cap. If the +/- segments are flashing, this indicates that the target power factor has not been achieved. A suitable capacitor size will be selected.
- **4** = Manual operation. The display will show alternately "**H**" (1sec) and Power Factor (5 secs). Capacitor steps can be switched in rotation after the selected step switch time, using the +/- buttons.
- **5** = The number of switching steps can be limited, using +/- buttons. The display will indicate the number of steps e.g. for 10 steps "CL10". **Do not exceed the number of steps on the relay!**
- 6 = Automatic indication in the display of the number of steps which are not connected or are not working. The indication will rotate through the non-functioning steps, e.g. "Cd 5" = 5 non-functioning steps. Display "Cd 0" means that all steps are functioning. Automatic regulation is active during this time!
- 7 = The number of switchings each contactor has made is shown in the display, e.g. "OC 4" for 2 secs., then "250". This indicates that contactor no. 4 has completed 250 switchings. Other contactors can be selected using the +/- buttons. The microprocessor stores the data each time the contactor has 50 completed switchings. The stored data of all steps can be cancelled by depressing the +/- buttons **together**, for a period of > 20 secs. Automatic regulation is active during this time!
- 8 = Indicates the measured "unit of value" of each step, which is proportional to the capacitor output in kVAr. For example, the display will show "CC 12" for 2 secs., to indicate step No. 12., and will then alternate to "125" units of value. Once the value falls below a level of < "8", the capacitor will be excluded from the regulation process. The "unit of value" for other steps is obtained by depressing the + or- buttons to select the required steps. Automatic regulation is active during this time! The stored data of all steps can be cancelled by depressing +/- buttons together for a period > 20 secs.
- 9 = Selects the mode of alarm signal required. If the display shows "A 0", the alarm is stored in the memory and can only be cancelled by briefly switching DIP switch 2 off. If the display shows "A I", the alarm will be cancelled automatically, when the target power factor level is restored (Selection by means of +/- buttons). The relay will be supplied in "A1" mode unless otherwise specified on the order.

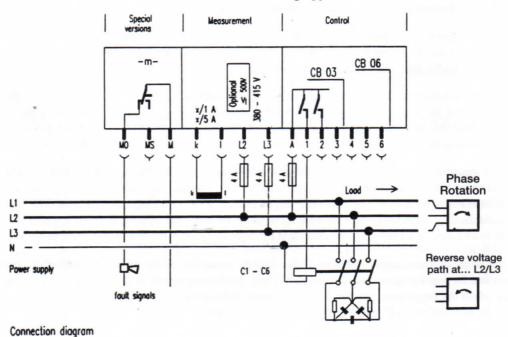
Optional Setting Features

External Fault Signalling Contact (-m-) to indicate target $\cos \phi$ not obtained.

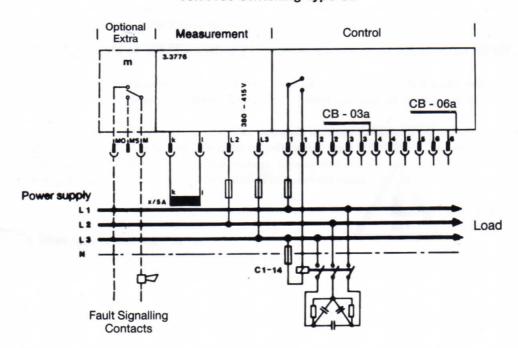
Testing the Relay at Switchboard Manufacturer's Premises Prior to Despatch to Site


Normally this test takes place with no capacitors connected. This test ensures that all contactors are operating correctly. We recommend the test is done in "manual" operation. (Function switch in position 4) as (17) overleaf.

If it is required to do the test on automatic operation (function switch in position 3) ensure that the total switching time does not exceed 9 minutes to complete the test. Remember to allow for the initial lock out time of 90 seconds. The reason for this is that if the relay does not see any current input on terminals 1 - k for 9 minutes or more, all steps are switched out. They are re-energised by putting the function switch to 8 and pressing + - buttons together for more than 20 seconds.


This re-sets the CB memory function.

Operator and Indication Elements


- 1. CT Setting 1A or 5A input. Up = 5A Down = 1A
- 2. Target p.f. alarm Up = On Down = Off
- 3. Function Switch. Adjustable positions normally 0.....9
- 4. Button
- 5. + Button
- 6. LED Indicators showing active steps
- 7. TTL output for computer data logger via RS232 interface
- 8. LED Digital Display
- 9. Alternative Target PF Selected Indicator

Common Point Switching Type CB

Volt Free Switching Type CB

